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The mean field model proposed by Makeev and Nieuwenhuys �J. Chem. Phys. 108, 3740 �1998�� simulates
the oscillatory behavior experimentally observed in the NO+H2 reaction on the surface Pt�100�. This model
reproduces quite well the kinetic oscillations and the transition to chaos via the Feigenbaum route, that is to
say, through bifurcations involving period doubling. From this model, we analyze the response of the natural
oscillations of period-1 �P1, one maximum� to periodic perturbations superposed to the partial pressure of one
of the reactants. The perturbed model reproduces the periodic states found in the autonomous model, the route
to chaos through bifurcations with period doubling, and the appearance of chaos via the route of intermittency,
which shows alternation of periodic oscillations with intervals of disordered oscillations in the same time
evolution. Experimentally it has been observed that the reaction shows a great sensitivity to reactant partial
pressures and temperature. In experimental conditions slightly different to those considered in Makeev and
Nieuwenhuys �MN� model, oscillations with period-3 �P3, three maxima� have been observed. At T=457 K
and certain pressures, these P3 oscillations do not appear in MN model, although they appear at T=456 K. The
same effect �P3 oscillations� is obtained at T=457 K in our perturbed model, due to the modulation of pH2

. In
a second step we show how the modulation of the perturbing frequency influences on the oscillations P1 of the
perturbed system. The results show that the periodic behavior loses its regularity at low values of the normal-
ized amplitude and of the modulated frequency of the perturbation. Other aspect observed in the perturbed
model is that the amount of products varies in relation to nonperturbed model. When the oscillations are
periodic or they follow the Feigenbaum route to chaos, the production average decreases or slightly increases,
whereas it always increases if there are intermittencies, the most significant percentage increase being for NH3

�nearly 10%�.
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I. INTRODUCTION

Catalytic reduction of nitric oxide by hydrogen on surface
Pt�100� has been studied experimentally and theoretically
�1–8�. For certain experimental conditions a complex dy-
namic behavior has been observed. This dynamics includes,
among others, regular oscillations, chaotic behavior and for-
mation of spatial patterns.

Kinetic oscillations have been observed at pressures of the
reactant gases in the range 10−6 to 10−5 mbar and at tem-
perature ranging from 430 to 500 K. Previous theoretical
studies �9,10� suggested that the kinetic oscillations are due
to the surface phase transition �SPT� �1�1�⇔hex. However
Cobden et al. �4� proposed an alternate view. They used a
“vacancy model” where oscillations are due to the self-
catalytic surface reaction that increases the number of vacant
sites which are required for NO dissociation on the �1�1�
phase, although they did not propose any mathematical
model of that mechanism. Later Makeev and Nieuwenhuys
�MN� developed a mathematical model �six variables model�
�11� in order to demonstrate that the self-catalytic decompo-
sition of NO through vacant sites was one of the most im-
portant conditions to cause the system oscillations and nec-
essary to kept them. The other major property was that the
activation energies for desorption and dissociation of NO
depend on the surface coverage.

Catalytic reduction of NO by CO on Pt�100� exhibits a
dynamic behavior similar to that observed in the reaction

NO+H2 /Pt�100�. For the system NO+CO Fink et al. �12�
demonstrated that the oscillatory behavior appears in two
windows. In the window at low temperature �about 400 K�
the system shows an oscillatory behavior without the SPT is
observed and in the window at high temperature �about 450
K� the SPT is detected during the kinetic oscillations. Simi-
larly, in the system NO+H2 /Pt�100� oscillations take place
on the �1�1� surface when temperature is relatively low
�T�480 K�. In fact, MN �11� demonstrated that the �1
�1�⇔hex SPT is not essential to produce oscillatory behav-
ior in the window at low temperature and, therefore, they did
not included the SPT in their model. This was formulated in
terms of six differential equations for the time evolution of
the surface adsorbates in the �1�1� phase. This model can
reproduce quite well several experimental observations con-
cerning the NO+H2 reaction. These observations include,
among others, temperature programmed desorption �TPD�
and temperature programmed reaction �TPR� spectra, the
temperature dependence of the oscillatory period, and a tran-
sition from period-1 oscillations to chaos through period
doubling bifurcations when the H2 pressure is decreased.

Nevertheless, the model does not reproduce the experi-
mental hysteresis in the H2O production rate and the surface
structure since it does not assume the SPT. Obviously, the
hysteresis is associated with the changes in the surface struc-
ture during a heat-cool cycle. In order to model the hyster-
esis, MN extended their model to include the adsorbate-
induced �1�1�⇔hex SPT in a subsequent paper �eight
variables model� �13�. They demonstrated that at tempera-
tures higher than 480 K �when the adsorbate coverages be-
come low�, oscillations take place on a largely hex-
reconstructed surface. Decreasing the temperature induces an*lemos@us.es
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increase in the adsorbate coverage and, as a result, an in-
crease in the fraction of the �1�1� phase. At relatively low
temperatures �420 K�T�480 K�, oscillations take place
on a surface that is completely in the �1�1� surface. The
results of the eight variables model show that the effect of
surface restructuring is not essential for producing oscillatory
behavior in the low temperature window, although oscilla-
tions are observed on a largely hex-reconstructed surface at
the upper part of the range of temperatures. So, according to
MN �13�, the main oscillation mechanism is determined by
the reactions occurring within the nonideal adlayer on the
�1�1� surface of Pt�100�, where the autocatalytic formation
of vacant sites which are required for NO dissociation plays
a decisive role.

The periodic perturbation of the reaction kinetics through
the variation in some external control parameter, as, for ex-
ample, the pressure of a reactant or the gas temperature, is
one of the tools more frequently used in the study of hetero-
geneous catalytic reactions �14�. The results obtained in this
field refer generally to perturbations of oscillations with
period-1 �P1� through the periodic modulation of one of the
control parameters. In experiments focused on the study of
the complex behavior in oscillatory catalytic reactions, the
technique of the periodic forcing is used as for stabilizing
oscillations P1, which is achieved if both external and inter-
nal frequencies coincide, as for generating quasiperiodic os-
cillations or to control chaos. In this case, one intends to
stabilize the unstable periodic orbits contained in the chaotic
attractors of the system.

Too one of the goals of applying periodic perturbations on
a reaction is to see whether these perturbations can be used
to improve the performance of this reaction, e.g., increasing
the amount of resultant products �14�.

The effect of periodic perturbations on the oscillatory ki-
netics of the NO+H2 reaction on Pt�100� was analyzed by
Zhdanov �15� through Monte Carlo simulations. In his simu-
lations, Zhdanov used a model by taking into account the
surface reconstruction ��1�1�⇔hex SPT�. These Monte
Carlo simulations only illustrated the effect of perturbations
on period-2 oscillations. With this purpose, Zhdanov applied
a periodic modulation in the partial pressure of the NO gas.
The simulations were carried out with five frequencies and
three modulation amplitudes. The results of simulations
showed that period-2 oscillations are sustained if the external
frequency equals the main internal frequency. In contrast,
perturbations with other frequencies may easily change the
period-2 oscillations. In particular, period-2 oscillations may
be converted to period-1 oscillations or period-3 oscillations.
Finally, quasiperiodic or chaotic behaviors are not observed.

Transitions to chaos in dissipative systems can take place
according to three scenarios. One of them is the Feigenbaum
route �16� where chaos is reached through bifurcations in-
volving period doubling. Other approximation to chaos is the
called intermittency route �17�, in which periodic behavior
alternates with disordered bursts more or less short. The
number of these irregular bursts can be increased through the
change of some external control parameter up to the signal
becomes completely chaotic. A third scenario is the Ruelle-
Takens-Newhouse route �18,19�, in which the appearance of
quasiperiodic behavior precedes the emergence of an strange
attractor.

The aim of our study is analyzing the influence of the
periodic forcing technique, which we have previously ap-
plied to the reactions CO+O2 �20,21� and N2O+H2 �22�, has
on the oscillatory behavior found in the reaction NO+H2,
starting from the first mean field model proposed by MN
�11�.

This paper is divided as follow. First, we use the MN
model to reproduce the periodic and chaotic oscillations
which are observed in the NO+H2 /Pt�100� system without
considering the �1�1�⇔hex SPT. The characteristics and
the results of the nonperturbed model are explained in Sec.
II. In Sec. III we show the results obtained when the natural
oscillations P1 are periodically perturbed. Later, the perturb-
ing frequency is modulated and the way as this perturbation
affects to the oscillations P1 observed in the perturbed sys-
tem is analyzed. Finally, in Sec. IV we summarize some
conclusions.

II. MODEL OF MAKEEV AND NIEUWENHUYS ON THE
NO+H2 ÕPt(100)-(1Ã1) REACTION

Makeev and Nieuwenhuys modeled the reaction accord-
ing to the following set of elemental steps:

NO�g� + V → NO�ads� , �1�

H2�g� + 2V → H�ads� + H�ads� , �2�

NO�ads� → NO�g� + V , �3�

H�ads� + H�ads� → H2�g� + 2V , �4�

N�ads� + N�ads� → N2�g� + 2V , �5�

NO�ads� + V → N�ads� + O�ads� , �6�

N�ads� + O�ads� → NO�ads� + V , �7�

O�ads� + H�ads� → OH�ads� + V , �8�

N�ads� + H�ads� → NH�ads� + V , �9�

NH�ads� + V → N�ads� + H�ads� , �10�

NH�ads� + H�ads� → NH2�ads� + V , �11�

NH3�ads� → NH3�g� + V , �12�

NH2�ads� + H�ads� → NH3�ads� + V , �13�

OH�ads� + H�ads� → H2O�ads� + V , �14�

H2O�ads� → H2O�g� + V , �15�

where V is a vacant site on the Pt�100�-�1�1� surface, �ads�
denotes an adsorbed particle on the surface and �g� indicates
the gas phase. NO�g� and H2�g� are the reactants in the gas
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phase with partial pressures pNO and pH2
, respectively. The

reaction products are N2�g�, NH3�g� and H2O�g�.
The mechanism of the reaction includes the adsorption/

desorption processes of NO and H2, dinitrogen formation
through combination of two adjacent adatoms of nitrogen,
reversible dissociation of NO�ads� producing N and O ada-
toms, ammonia formation through reversible hydrogenation
�via intermediates NH�ads� and NH2�ads��, and water forma-
tion through hydrogenation of O�ads� �via intermediate
OH�ads��.

In order to reduce the number of variables in the model,
desorption of H2O�ads� �Eq. �15��, and hydrogenation of
both intermediates OH�ads� �Eq. �14�� and NH2�ads� �Eq.
�13�� are assumed quick processes and they are not taken into
account for the whole reaction. Because of these assump-
tions, only six species are considered, NO�ads�, H�ads�,
N�ads�, O�ads�, NH�ads�, NH3�ads�, and their corresponding
surface densities np, being p=NO,H,N,O,NH,NH3 or p
=1, . . . ,6.

The appearance of oscillations in the model arises from
the demand of two important conditions: the need of vacant
sites for the self-catalytic dissociation of NO and the depen-
dence of the activation energies on the coverage for the pro-
cesses of dissociation and desorption of NO. These nonlin-
earities are explained in terms of lateral interactions in the
adlayer. So, the model takes into account the nonlinearity of
the adlayer through the parameters of lateral interaction ��p
as we will see afterwards. If the step � proceeds in some site
of the lattice, then one assumes that each next nearest neigh-
bor of type p decreases its activation energy E� in the value
��p. At a microscopic scale, these energetic parameters show
the effective influence of the neighborhood on the activation
energies of the elemental steps of the reaction. The value ��p
may be considered as the difference of the lateral interactions
between both activated and fundamental states.

According to the reaction mechanism proposed, the time
change in the surface densities along the reaction is de-
scribed through six coupled differential equations:

dnNO

dt
= R1 − R3 − R6 + R7, �16�

dnH

dt
= 2R2 − 2R4 − 2R8 − R9 + R10 − 2R11, �17�

dnN

dt
= R6 − 2R5 − R7 − R9 + R10, �18�

dnO

dt
= R6 − R7 − R8, �19�

dnNH

dt
= R9 − R10 − R11, �20�

dnNH3

dt
= R11 − R12. �21�

The rates R� of the elemental steps �Eqs. �1�–�12�� of the
reaction are expressed as

R1 = k1pNOSNOnV, R2 = k2pH2
SH2

nV
2 ,

R3 = k3I3nNO, R4 = k4I4nH
2 ,

R5 = k5I5nN
2 , R6 = k6I6nNOnV,

R7 = k7nNnO, R8 = k8nOnH,

R9 = k9nNnH, R10 = k10nNHnV,

R11 = k11nNHnH, R12 = k12nNH3
,

where

nV = 1 − nNO − nH − nN − nO − nNH − nNH3
,

k� = �� exp�− E�

RT
�, ∀ � = 1, . . . ,12,

I� = �nV + �
p=1

6

np exp���p

RT
��m�

.

Here, m� is the number of next nearest sites. The quanti-
ties I� determine the influence of the lateral interactions on
the rates of the elemental processes. The gas constant R is
equal to 1.987 cal K−1 mol−1.

The values of the parameters of the model are shown in
Tables I and II.

For the numerical integration of the differential Eqs.
�16�–�21� we have used the Runge-Kutta method. The simu-

TABLE I. Kinetic parameters used in the model.

Reaction step, �
��

�s−1�
E�

�kcal/mol�

1 2.14�105 mbar−1 0

2 8.28�105 mbar−1 0

3 1.7�1015 37

4 1012 25

5 1013 24

6 2�1015 28

7 2�1015 23

8 1013 13

9 109 15

10 1013 29

11 109 17.7

12 109 19

SNOk1=1.93�105 mbar−1 s−1, SH2
k2=1.656�105 mbar−1 s−1
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lations were performed with a tolerance of 10−9.

Autonomous kinetic oscillations

If the partial pressures of the reactant gases are fixed,
autonomous oscillations can be observed for certain values
of temperature. A sample of these oscillations at T=434 K,
pNO=1.1�10−6 mbar, and pH2

=7.6�10−6 mbar are shown
in Fig. 1. There the formation rates of the products H2O, N2,
and NH3 �Fig. 1�a��, from greater to lesser oscillation ampli-
tudes, respectively, and the densities of the adsorbed particles
NO, NH, H, and NH3 �Fig. 1�b��, from greater to lesser os-
cillation amplitudes, respectively, are drawn. The surface
coverage of O�ads� and N�ads� are very low during oscilla-
tions and they are not shown. The oscillation period is 42 s,
similar to that found experimentally. The model also repro-
duces the experimental results that indicate that the signals of
N2, H2O, and NH3 oscillate practically in phase. The mecha-
nism of the oscillations can be explained because when nNO
is at a maximum there is a low catalytic activity and the
reaction inhibits due to the high coverage of the adsorbate.
After a short interval, the NO adlayer reacts and a self-
catalytic increase of the vacant number takes place, causing
an increase in the reaction rate of the products. Before nNO
reaches the minimum value, the densities of the remaining

species begin to increase quickly. Finally nNO begins to in-
crease again, the production rates of N2 and H2O decrease
and the reaction come back to the state with low catalytic
activity, starting a new cycle.

In the experiments, the aperiodic oscillations arise as a
result of the period doubling when the partial pressure of H2
decreases. The transition to aperiodicity occurs in a range
very narrow of the control parameter. Even so, the experi-
ments revealed a succession of three bifurcations with period
doubling after the solution P1. Moreover oscillations with
period-3 �P3� and period-5 �P5� are found in the parametric
region where the transition to aperiodic behavior was ob-
served.

The MN model shows excellent agreement with the ex-
periments. They got a bifurcation diagram that revealed the
Feigenbaum route to chaos and an approximate structure of
the periodic and chaotic windows. The bifurcation diagram
was drawn fixing temperature and pressure of NO and de-
creasing the pressure of H2 from a high value corresponding
to oscillations P1 with large amplitudes. A transition from the
state P1 to chaos through successive period doubling is ob-
served when pH2

decreases. Subsequent decreases of pH2
lead

TABLE II. Parameters of lateral interactions used in the model. ��,X in kcal/mol.

Reaction step, � ��,NO ��,H ��,N ��,O ��,NH ��,NH3
m�

3 1.8 0 0 0.8 0 0 4

4 1.5 0 0 0 1.5 0 6

5 1.5 0 0.3 1.8 0 0 6

6 −2 −1 0 −2 −2 −2 6
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FIG. 1. Time series of the autonomous oscillations of �a� reac-
tion rates of H2O �thin line�, N2 �thick line� and NH3 �discontinuous
thick line� and �b� surface densities of NO �thick line�, NH �discon-
tinuous thick line�, H �thin line� and NH3 �discontinuous thin line�.
This series corresponds at T=434 K, pNO=1.1�10−6 mbar and
pH2

=7.6�10−6 mbar.
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FIG. 2. Route to chaos through period doubling obtained in the
autonomous system at T=457 K, pNO=5�10−6 mbar as a func-

tion of p=
pH2

pNO
. �a� Period-1, p=2.52; �b� period-2, p=2.50; �c�

period-4, p=2.46; �d� period-8, p=2.4585 and �e� chaos, p=2.45.
The left and central columns show the NO and NH coverages,
respectively. The right column displays the projections of the dif-
ferent states considered on the nNO−nNH plane.
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to a periodic oscillatory state with small amplitude.
Figure 2 shows five representative time series obtained

decreasing pH2
and displays the period doubling route to

chaos. The calculations were performed fixing temperature
T=457 K and the partial pressure pNO=5�10−6 mbar. So,
the control parameter is the ratio between the pressures of the

reactants, p=
pH2

pNO
. The responses are oscillations

�a� P1 �p=2.52�, �b� P2 �p=2.50�, �c� P4 �p=2.46�, �d� P8
�p=2.4585�, and �e� chaos �p=2.45�. The two first columns
show the time evolution of nNO and nNH and the projection of
the state on the nNO-nNH plane is drawn in the third column.
The periodic attractors form closed curves and n loops cor-
respond to the oscillatory state with period-n �Pn�. The ape-
riodic oscillations show a great number of loops without no
loop passes on the previous one.

Figure 3 shows the Fourier transform and the next-
maximum map for the states displayed in Fig. 2. As can be
seen, the Fourier spectrum is discrete when oscillations are
periodic and it is continuous when oscillations are chaotic.
On the other hand, the next-maximum map shows 1, 2, 4, or
8 points depending on the periodic oscillations are P1, P2,
P4, or P8, respectively, and an open line, which is character-
istic of a chaotic state. There is no doubt about the chaotic
character of this last time series. We have calculated, more-
over, the maximum Lyapunov exponent and it results
0.034 69, with positive sign, so confirming the chaotic nature
of this state.

In Table III the ranges of p=
pH2

pNO
where different kinds of

oscillations of the model are found are displayed. Our results
are similar to those of Caballero and Vicente �23�. They ex-
tended the MN model to include defects on the catalytic
surface and to consider nonuniformity of the surface in one
and two dimensions. As well, they performed Monte Carlo
simulations to show the time evolution of the surface densi-
ties and to complement the mean field calculations of MN.

Experimentally it has been observed that the reaction of
reduction of nitric oxide with hydrogen over Pt�100� shows a
great sensitivity to reactant partial pressures, as well as tem-
perature and, as it has been said before, oscillations P3 and
P5 were discovered �4�. For conditions slightly different to
those taken into account in experiments, the bifurcation dia-

FIG. 4. �Color� Kinetic phase diagram obtained through periodic
perturbation of the autonomous model as a function of the normal-
ized amplitude �A� and frequency �f� of the perturbation, the natural
frequency being f0=0.103 76 Hz. The integer k indicates the ratio
between the input frequency and the output one in the different
regions with periodic oscillations. For high values of A one can
observe regions where k=1, 2, 3, 4, and 5, denoted by greatest size
integers, except narrow chaotic regions �black thin rectangles� em-
bedded among these periodic oscillatory states. In contrast, under-
neath these periodic regions the behavior is basically aperiodic. One
can observe isolated periodic states, denoted by smallest size inte-
gers and the symbol +�k�10�, and small periodic regions: red,
blue, green, prune, and sky blue rectangles indicate k=2, 3, 4, 5,
and 6, respectively. Red, blue and green broken rectangles indicate
periodic areas with k=7, 8, and 10, respectively, and black broken
rectangles are periodic regions with k�10. The black thick rect-
angles for A=0.04 and A=0.05 indicate regions with k=1.
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FIG. 3. Fourier spectra and next-maximum maps for the states
drawn in Fig. 2. One can observe that the discrete Fourier spectrum
becomes a continuous one when the chaotic state is reached. This
state is represented by an open line in the next-maximum map.

TABLE III. Ranges of p where the different oscillatory regions
of the model are found.

Oscillatory period p=
pH2

pNO
p=

pH2

pNO
�Ref. �23��

Period-1 2.512–10.58 2.565–10.27

Period-2 2.462–2.511 2.516–2.564

Period-4 2.4588–2.461 2.5119–2.515

Period-8 2.4585–2.4587 2.5111–2.5118

Chaos 2.4447–2.4584 2.5011–2.511
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gram of the MN model, at T=457 K, which is the tempera-
ture considered as reference to analyze the route to chaos in
that study, shows states P5 but no P3. The solution P3 is
obtained when temperature decreases slightly �T=456 K�.

III. PERTURBED MODEL

To test the stability of the periodic oscillatory behavior
found in the MN model, we have applied a perturbation in
the partial pressure of the H2 gas, using a sinusoidal function
with a single frequency

pH2

� = pH2
�1 + A sin�2�ft�� , �22�

where A and f are the normalized amplitude and the fre-
quency of the perturbation, respectively. A systematic varia-
tion in A and f will allow us to build the kinetic phase dia-
gram of the perturbed model that will show the different
dynamic states of the system and its possible bifurcation
points. The values of the other parameters of the perturbed
model are the same as in the previous section. Obviously, the
perturbation in the reaction rate R2, which now is written as
R2= pH2

�1+A sin�2�ft��SH2
k2nV

2 , causes as well perturba-
tions in the time change of the surface densities.

In a first step, we choose a state of the autonomous system
which exhibits oscillations P1 like that shown in Fig. 2�a�,

that is to say, at T=457 K, pNO=5�10−6 mbar and pH2

=1.26�10−5 mbar �p=
pH2

pNO
=2.52�. This state oscillates with

a natural frequency f0=0.103 76 Hz �period equal to 9.6 s�.
In order to simplify the display of our results, we have

chosen nNO as the only output variable because it has the
greatest surface density. Each time series corresponds to a
pair of values of A and f . In most cases the final regimes
have been reached quickly. For these cases we have taken
1600 time steps. We removed the first 600 points to discard
with security the transient regime in all cases and with the
remaining 1000 points we calculated the time average of nNO
and its fluctuation, such that nNO= �nNO	+	. However, the
system is close to critical lines until 5000 time steps have
been taken to assure the validity of our results. The results
are analyzed using the fluctuation of the surface density of
NO, 	. Later an analysis of the time series obtained is per-
formed using typical tools of the nonlinear dynamics as the
Fourier transform, the Poincaré map or the next-maximum
map. Sometimes we have calculated as well the maximum
Lyapunov exponent for some of the chaotic states observed.

The kinetic phase diagram of the perturbed model �Fig. 4�
is complex and shows a great richness of oscillatory behav-
iors. The diagram has been realized with an accuracy of 0.01
for the amplitude axis and 0.1 for the frequency axis. In
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FIG. 5. Route to chaos through period doubling obtained in the perturbed system at T=457 K, pNO=5�10−6 mbar, p=

pH2

pNO
=2.52, A

=0.12 and �a� period-1 �f =2f0�; �b� period-2 �f =2.2f0�; �c� period-4 �f =2.6f0�; �d� period-8 �f =3.6f0� and �e� chaos �f =3.8f0�. The different
columns show the time evolution of the NO surface coverage, the projection on the nNO−nNH plane, the Fourier transform and the
next-maximum map.
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broad outline it observed that if the perturbation amplitude is
high �A
0.15�, the response of the system is practically pe-
riodic up to values of the frequency of the perturbation f
�4f0, except the existence of some chaotic states embedded
among these periodic states. For f �4f0, aperiodic regions
are observed for high amplitudes. When the values of A are
low, the periodic regime loses its stability and becomes ape-
riodic due to the system tends to oscillate with a frequency
lesser than its natural frequency. In the transition toward cha-
otic states we have observed period doubling from an oscil-
latory state P1 and intermittency processes. These processes
take place, in some cases, without displaying the Feigen-
baum scenario: the system passed directly from periodic os-
cillations to chaotic ones. However, we did not observed the
appearance of quasiperiodic behavior.

The integer k denotes the ratio between the perturbing and
the output frequencies k= f

fout
, and one can observe regions

where k=1, 2, 3, and 4 for high values of A and values of
frequencies f �4f0. These large regions are denoted by the
greatest size integers. For frequencies f �4f0, red and prune
areas on the right upper corner are observed. These areas
correspond to periodic oscillatory regions with k=2 �red� and
k=5 �prune�. We have written the integers in bold face. It is
also observed a red region �k=2, not labeled� for values of
amplitudes between A=0.08 and A=0.15. At high amplitudes
�values of A between A=0.28 and A=0.30� and frequencies
ranging from 1.2f0 to 1.5f0, periodic oscillations with k=6
are observed. This region �not denoted� is surrounded by

chaotic and periodic areas. Similarly, periodic regions with
k=4 �not denoted� are obtained for frequencies close to 2f0
and values of A between A=0.25 and A=0.30. This region is
also surrounded by periodic area �sky blue rectangle� and
chaotic area �black thin rectangle�. In general, for high val-
ues of A�A
0.15�, the phase diagram shows periodic oscil-
latory large regions, except three narrow chaotic regions
�black thin rectangles� embedded among these periodic
states; two isolated periodic states with k=2 �indicated by
smallest size number� are also embedded among the periodic
region with k=1. However, underneath these periodic large
regions the behavior is basically aperiodic. One can observe
isolated periodic states �labeled by smallest size integers, the
symbol + indicating periodic oscillatory states with k
11�,
and small periodic regions: red, blue, green, prune, and sky
blue rectangles indicate k=2, 3, 4, 5, and 6, respectively.
Red, blue, and green broken rectangles indicate periodic os-
cillatory areas with k=7, 8, and 10, respectively, and black
broken rectangles are periodic oscillatory regions with k

11. The black thick rectangles for A=0.04 and A=0.05
indicate regions with k=1. The periodic regions that are ob-
served for frequencies f �4f0, have a special characteristic:
the oscillation amplitude decreases sharply. These periodic
oscillatory states with small amplitude are observed in the
autonomous system when pH2

decreases. As well it is ob-
served in the phase diagram that in the regions of periodic
oscillations the perturbed system oscillates with a frequency
equal or lesser than the perturbing frequency.
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FIG. 6. The different columns show the time evolution of the NO surface coverage, the projection on the nNO−nNH plane, the Fourier

spectrum and the next-maximum map obtained in the perturbed system at T=457 K, pNO=5�10−6 mbar, p=
pH2

pNO
=2.52, A=0.17 and �a�

period-1 �f = f0�; �b� intermittency �f =1.1f0�; �c� chaos �f =1.2f0� and �d� period-3 �f =1.3f0�.
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The results of the phase diagram show that the response
of the natural oscillations P1 with respect to periodic pertur-
bations is diverse. If the perturbing frequency equals to the
natural frequency, oscillations P1 are maintained with the
imposed frequency. Perturbations with other frequencies may
easily change the oscillation P1. We have observed how os-
cillations P1 are converted to oscillations with different pe-
riodicities �P1, P2, P3, …� or to chaotic states which arise as
through period doubling bifurcations as through intermit-
tency states. Next these features will be shown.

In Fig. 5 the Feigenbaum route to chaos of the perturbed
system is shown at A=0.12 and �a� f =2f0 �P1�, �b� f
=2.2f0 �P2�, �c� f =2.6f0 �P4�, �d� f =3.6f0 �P8� and �e� f
=3.8f0 �chaos�. The maximum Lyapunov exponent for this
chaotic state is 0.106 63. This figure includes in different
columns the time evolution of nNO, the projection on the
nNO−nNH plane, the Fourier transform and the next-
maximum map for the aforementioned states.

Figure 6 is similar to Fig. 5 and shows, for A=0.17, the
states �a� P1 �f = f0�, �b� intermittency �f =1.1f0�, �c� chaos
�f =1.2f0� and �d� P3 �f =1.3f0�. It appears here the intermit-
tency, which is other of the routes toward chaos. We remark
as well the appearance of P3, which is not observed in the
autonomous model and which is found experimentally. In
fact, MN found this state at temperature T=456 K, but they
did not observe P3 solution at T=457 K.

In Fig. 7 we show through time series and next-maximum
maps, fixing A=0.05, the evolution of the states of the per-
turbed system when the perturbing frequency changes. The
system passes from an intermittent state for �a� f =0.1f0 to

the periodic oscillatory states �b� P7 �f =0.2f0�, �c� P5 �f
=0.3f0�, �d� P4 �f =0.4f0� and �e� P3 �f =0.5f0�. Next the
system goes to chaotic states, �f� f =0.6f0 and �g� f =0.7f0; to
intermittent ones, �h� f =0.8f0 and �i� f =0.9f0; and, finally, to
the oscillatory �j� P1 �f = f0�.

In Fig. 8 we show again the intermittency phenomenon,
which this time occurs near a window of states P2. So, for a
fixed value of f =3.4f0, intermittency appears for �a� A
=0.04, �b� A=0.05, �e� A=0.08, �f� A=0.09 and �g� A
=0.10, whereas for �c� A=0.06 and �d� A=0.07 the system
exhibits an oscillatory state P2.

Figure 9 displays the drop in the oscillation amplitude
when the perturbing frequencies are high. When A=0.11,
one can see an oscillatory state P1 for �a� f =4f0, that passes
to chaotic if �b� f =4.1f0, and the oscillation amplitude de-
creases when �c� f =4.2f0 �P2� and �d� f =4.3f0 �P1�.

The analysis of perturbations of natural oscillations P1 at
different frequencies and amplitudes was the goal of our
study. To extend this, in a second step, we impose a sinu-
soidal variation to the perturbation frequency, such that now

f = f0�1 + A� sin�2�f�t�� , �23�

f0 being the natural frequency. The variables f� and A� de-
note, respectively, the frequency and the normalized ampli-
tude modulating the perturbation.

We choose a state of the perturbed system displaying os-
cillations P1 �A=0.2, f = f0=0.10376 Hz� and analyze the
response of this state when the perturbing frequency f is
modulated according to Eq. �23�. We have performed simu-
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FIG. 7. Time evolution of the NO surface density and next-maximum map of the perturbed system at T=457 K, pNO=5�10−6 mbar,

p=
pH2

pNO
=2.52, A=0.05 and �a� intermittency �f =0.1f0�; �b� period-7 �f =0.2f0�; �c� period-5 �f =0.3f0�; �d� period-4 �f =0.4f0�; �e� period-3

�f =0.5f0�; �f� chaos �f =0.6f0�; �g� chaos �f =0.7f0�; �h� intermittency �f =0.8f0�; �i� intermittency �f =0.9f0�, and �j� period-1 �f = f0�.

LEMOS, CÓRDOBA, AND DE LA TORRE PHYSICAL REVIEW E 81, 036116 �2010�

036116-8



lations for f1
�=0.01f , f2

�=0.05f , and f3
�=0.1f . For each fixed

value of f� the modulating amplitude A� is varied in 1%, 2%,
3%, 4%, 5%, 10%, 15%, and 20% of the normalized ampli-
tude of the perturbation A. The results obtained are similar in

all cases. The states P1 lose their regularity as A� increases
up to finally the periodic oscillation changes to an aperiodic
behavior. The appearance of the aperiodic behavior is sooner
as f� is greater. So, periodicity is lost for A�=0.1A with f1

�

=0.01f; for A�=0.02A with f2
�=0.05f and for A�=0.01A

when f3
�=0.1f .

For A=0.2, f =0.10376 Hz, and f�=0.1f , one can observe
in Fig. 10 how the initial behavior �a� P1 �A�=0� disappears
as soon as A� increases. For �b� A�=0.01A, the state P1 be-
gins to modulate by the top side. For �c� A�=0.02A the cha-
otic state have established already, remaining for the other
perturbing amplitudes �d� A�=0.03A, �e� A�=0.04A, �f� A�

=0.05A, and �g� A�=0.10A. Therefore, the periodic structure
increases irregularity when the modulating amplitude A� in-
creases up to, finally, the periodic oscillation is lost.

It is suitable to observe �Table IV, which corresponds to
the cases shown in Figs. 5 and 8� that, in general, in the case
of periodic forcing, even though the average value of the
partial pressure of the H2 is equal to the constant value of the
autonomous case, the average values of the production of
H2O, N2, and NH3 are modified, being the values greater or
lesser than those in the case nonperturbed. When the state is
periodic �Pn� or follows the Feigenbaum route to chaos there
is a decrease or a small increase of the production, whereas
an increase is produced if there are intermittencies. The
greatest increase in percentage �%� takes place for NH3 pro-
duction, reaching, for the cases analyzed, approximately up
to 10%.

IV. CONCLUSIONS

Summarizing, we have demonstrated, starting from the
MN model, which simulates the experimentally observed os-
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FIG. 8. Intermittency near the window of period-2. The time evolution of the NO surface density and the next-maximum map of the

perturbed system are shown at T=457 K, pNO=5�10−6 mbar, p=
pH2

pNO
=2.52, f =3.4f0 and �a� intermittency �A=0.04�; �b� intermittency

�A=0.05�; �c� period-2 �A=0.06�; �d� period-2 �A=0.07�; �e� intermittency �A=0.08�; �f� intermittency �A=0.09� and �g� intermittency
�A=0.10�.
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FIG. 9. Drop in the oscillation amplitude when the perturbing
frequency is high. The time evolution of the NO surface density and
the next-maximum map of the perturbed system are shown at

T=457 K, pNO=5�10−6 mbar, p=
pH2

pNO
=2.52, A=0.11 and �a�

period-1 �f =4f0�; �b� chaos �f =4.1f0�; �c� period-2 �f =4.2f0� and
�d� period-1 �f =4.3f0�.
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cillatory behavior in the heterogeneous catalytic reaction
NO+H2 on Pt�100� without to take into account the surface
reconstruction �11�, that the periodic perturbations on
period-1 natural oscillations may easily change these oscilla-
tions. Period-1 oscillations are stable with respect to pertur-
bations with a frequency equal to the natural frequency.
However, perturbations with other frequencies may shift the
type of oscillation. For instance, period-1 oscillations are
converted to period-2, period-4, period-8, and chaos �Fig. 5�
when the frequencies increase, showing a transition to chaos

through period doubling similar to that which is caused by
decreasing the partial pressure of the H2 gas within the au-
tonomous model. It is also observed how period-1 oscilla-
tions change to oscillations with period-7, period-5, period-4,
and period-3 �Fig. 7� or period-1 oscillations are converted to
period-2 oscillations through chaotic states with intermitten-
cies �Fig. 8�. Oscillations with different periodicities and
chaotic behavior are observed in the perturbed model; still,
we have not observed the appearance of quasiperiodic behav-
ior. On the other hand, the results obtained when the pertur-
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FIG. 10. Time series and next-maximum map that express the response of the oscillations of period-1 observed in the perturbed system

at T=457 K, pNO=5�10−6 mbar, p=
pH2

pNO
=2.52, A=0.2, and f =0.10376 Hz with a perturbing frequency f�=0.1f and perturbing amplitudes

A� equal to �a� 0, �b� 0.01A, �c� 0.02A, �d� 0.03A, �e� 0.04A, �f� 0.05A and �g� 0.10A.

TABLE IV. Variations in percentage �%� of the average yield of the reaction products in the perturbed

model in relation to the nonperturbed model, at T=457 K, pNO=5�10−6 mbar, and p=
pH2

pNO
=2.52.

Amplitude Frequency State H2O N2 NH3

0.12 2f0 Period-1 −10.9 −12.0 −7.2

0.12 2.2f0 Period-2 −4.0 −5.1 +3.9

0.12 2.6f0 Period-4 −1.8 −2.6 +6.3

0.12 3.6f0 Period-8 +2.0 +1.5 +7.1

0.12 3.8f0 Chaos via Feigenbaum route −0.6 −1.0 +3.8

0.04 3.4f0 Intermittency +2.7 +2.4 +7.7

0.05 3.4f0 Intermittency +2.0 +1.4 +8.6

0.06 3.4f0 Period-2 +0.2 −0.5 +8.5

0.07 3.4f0 Period-2 +0.1 −0.7 +8.5

0.08 3.4f0 Intermittency +1.5 +0.8 +8.6

0.09 3.4f0 Intermittency +3.2 +2.7 +9.4

0.10 3.4f0 Intermittency +3.9 +3.4 +9.7
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bation frequency is modulated show that the period-1 oscil-
lations of the perturbed system becomes irregular for low
values of the modulating amplitude A� and frequency f� of
the perturbation.

It is appropriate to indicate that the results of the per-
turbed model are analogs to others which are obtained when
other oscillating chemical reactions are periodically per-
turbed. However, periodic perturbation of the kinetics of a
reaction is an alternative in studies of heterogeneous cata-
lytic reactions, above all with regard to possible limitations
as experimental as theoretical. From experimental and mod-
els results this reaction reveals a great sensitivity to reactant
pressures and temperature. To this effect the period-3 oscil-
lations, that do not appear in the MN autonomous model at
T=457 K, but they do at slightly lower temperature, are ob-
tained in the perturbed model at T=457 K. Moreover, in the
perturbed model appears chaos through intermittency. Other

effect observed when periodic perturbations are applied on
pH2

is that the average yield of the products H2O, N2, and
NH3 varies, although the average value of pH2

is equal to the
constant pH2

in the nonperturbed model. In the cases consid-
ered here, the average yield of products decreases or slightly
increases when the oscillations are periodic or they follow
the Feigenbaum route to chaos, whereas the average yield of
products always increases if there are intermittencies, the
increase percentage being more significant for NH3 �nearly
10%�.

ACKNOWLEDGMENTS

This work is partially funded by the Project No. P06-TIC-
02025 of the Junta de Andalucía and Project No. FIS2008-
04120 of the Spanish Government.

�1� M. W. Lesley and L. D. Schmidt, Surf. Sci. 155, 215 �1985�.
�2� J. Siera, P. Cobden, K. Tanaka, and B. E. Nieuwenhuys, Catal.

Lett. 10, 335 �1991�.
�3� H. H. Madden and R. Imbihl, Appl. Surf. Sci. 48/49, 130

�1991�.
�4� P. D. Cobden, J. Siera, and B. E. Nieuwenhuys, J. Vac. Sci.

Technol. A 10, 2487 �1992�.
�5� M. Slinko, T. Fink, T. Löher, H. H. Madden, S. J. Lombardo,

R. Imbihl, and G. Ertl, Surf. Sci. 264, 157 �1992�.
�6� S. J. Lombardo, M. Slinko, T. Fink, T. Löher, H. H. Madden,

F. Esch, R. Imbihl, and G. Ertl, Surf. Sci. 269/270, 481 �1992�.
�7� D. Y. Zemlyanov, M. Y. Smirnov, V. V. Gorodetskii, and J. H.

Block, Surf. Sci. 329, 61 �1995�.
�8� R. Imbihl and G. Ertl, Chem. Rev. 95, 697 �1995�.
�9� S. J. Lombardo, T. Fink, and R. Imbihl, J. Chem. Phys. 98,

5526 �1993�.
�10� M. Gruyters, A. T. Pasteur, and D. A. King, J. Chem. Soc.,

Faraday Trans. 92, 2941 �1996�.
�11� A. G. Makeev and B. E. Nieuwenhuys, J. Chem. Phys. 108,

3740 �1998�.

�12� T. Fink, J.-P. Dath, R. Imbihl, and G. Ertl, J. Chem. Phys. 95,
2109 �1991�.

�13� A. G. Makeev and B. E. Nieuwenhuys, Surf. Sci. 418, 432
�1998�.

�14� V. P. Zhdanov, Surf. Sci. Rep. 55, 1 �2004�.
�15� V. P. Zhdanov, Phys. Rev. E 68, 056212 �2003�.
�16� M. J. Feigenbaum, J. Stat. Phys. 19, 25 �1978�.
�17� Y. Pomeau and P. Manneville, Intrinsic Stochasticity in Plas-

mas, 329 �Editions de Physique, Orsay, France, 1979�.
�18� D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167

�1971�.
�19� S. Newhouse, D. Ruelle, and F. Takens, Commun. Math. Phys.

64, 35 �1978�.
�20� A. Córdoba, M. C. Lemos, and F. Jiménez-Morales, J. Chem.

Phys. 124, 014707 �2006�.
�21� A. Córdoba, M. C. Lemos, and F. Jiménez-Morales, Phys. Rev.

E 74, 016208 �2006�.
�22� M. C. Lemos and A. Córdoba, Catal. Lett. 121, 121 �2008�.
�23� F. V. Caballero and L. Vicente, Chem. Eng. Sci. 58, 5087

�2003�.

EFFECTS OF PERIODIC PERTURBATIONS ON THE… PHYSICAL REVIEW E 81, 036116 �2010�

036116-11


